Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.768
2.
Biomed Pharmacother ; 174: 116595, 2024 May.
Article En | MEDLINE | ID: mdl-38640709

Fatty liver is the earliest response of the liver to excessive alcohol consumption. Previously we identified that chronic alcohol administration increases levels of stomach-derived hormone, ghrelin, which by reducing circulating insulin levels, ultimately contributes to the development of alcohol-associated liver disease (ALD). In addition, ghrelin directly promotes fat accumulation in hepatocytes by enhancing de novo lipogenesis. Other than promoting ALD, ghrelin is known to increase alcohol craving and intake. In this study, we used a ghrelin receptor (GHSR) knockout (KO) rat model to characterize the specific contribution of ghrelin in the development of ALD with emphasis on energy homeostasis. Male Wistar wild type (WT) and GHSR-KO rats were pair-fed the Lieber-DeCarli control or ethanol diet for 6 weeks. At the end of the feeding period, glucose tolerance test was conducted, and tissue samples were collected. We observed reduced alcohol intake by GHSR-KOs compared to a previous study where WT rats were fed ethanol diet ad libitum. Further, when the WTs were pair-fed to GHSR-KOs, the KO rats exhibited resistance to develop ALD through improving insulin secretion/sensitivity to reduce adipose lipolysis and hepatic fatty acid uptake/synthesis and increase fatty acid oxidation. Furthermore, proteomic data revealed that ethanol-fed KO exhibit less alcohol-induced mitochondrial dysfunction and oxidative stress than WT rats. Proteomic data also confirmed that the ethanol-fed KOs are insulin sensitive and are resistant to hepatic steatosis development compared to WT rats. Together, these data confirm that inhibiting ghrelin action prevent alcohol-induced liver and adipose dysfunction independent of reducing alcohol intake.


Ethanol , Ghrelin , Liver Diseases, Alcoholic , Liver , Rats, Wistar , Receptors, Ghrelin , Animals , Male , Rats , Alcohol Drinking , Fatty Acids/metabolism , Ghrelin/metabolism , Insulin/metabolism , Insulin/blood , Insulin Resistance , Liver/metabolism , Liver/drug effects , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Oxidative Stress/drug effects , Proteomics/methods , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/genetics
3.
Sheng Li Xue Bao ; 76(2): 329-340, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38658381

Chronic liver disease (CLD) is a major global health burden in terms of growing morbidity and mortality. Although many conditions can cause CLD, leading to cirrhosis and hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the most common culprits. Prostaglandin E2 (PGE2), produced in the liver, is an important lipid mediator derived from the ω-6 polyunsaturated fatty acid, arachidonic acid, and plays a critical role in hepatic homeostasis. The physiological effects of PGE2 are mediated through four classes of E-type prostaglandin (EP) receptors, namely EP1, EP2, EP3 and EP4. In recent years, an increasing number of studies has been done to clarify the effects of PGE2 and EP receptors in regulating liver function and the pathogenesis of CLD to create a new potential clinical impact. In this review, we overview the biosynthesis and regulation of PGE2 and discuss the role of its synthesizing enzymes and receptors in the maintenance of normal liver function and the development and progress of CLD. We also discuss the potential of the PGE2-EP receptors system in treating CLD with various etiologies.


Dinoprostone , Liver Diseases , Receptors, Prostaglandin E , Humans , Dinoprostone/metabolism , Receptors, Prostaglandin E/metabolism , Receptors, Prostaglandin E/physiology , Liver Diseases/metabolism , Chronic Disease , Animals , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
4.
Semin Liver Dis ; 44(1): 69-78, 2024 Feb.
Article En | MEDLINE | ID: mdl-38574752

Excessive alcohol consumption represents an important burden for health systems worldwide and is a major cause of liver- and cancer-related deaths. Alcohol consumption is mostly assessed by self-report that often underestimates the amount of drinking. While alcohol use disorders identification test - version C is the most widely used test for alcohol use screening, in patients with liver disease the use of alcohol biomarker could help an objective assessment. The amount of alcohol that leads to significant liver disease depends on gender, genetic background, and coexistence of comorbidities (i.e., metabolic syndrome factors). All patients with alcohol-associated liver disease are recommended to follow complete abstinence and they should be treated within multidisciplinary teams. Abstinence slows down and even reverses the progression of liver fibrosis and can help recompensate patients with complicated cirrhosis. Whether there is a safe amount of alcohol in the general population is a matter of intense debate. Large epidemiological studies showed that the safe amount of alcohol to avoid overall health-related risks is lower than expected even in the general population. Even one drink per day can increase cancer-related death. In patients with any kind of chronic liver disease, especially in those with metabolic-associated steatotic liver disease, no alcohol intake is recommended. This review article discusses the current evidence supporting the deleterious effects of small-to-moderate amounts of alcohol in the general population and in patients with underlying chronic liver disease.


Alcoholism , Liver Diseases, Alcoholic , Neoplasms , Humans , Alcohol Drinking/adverse effects , Alcohol Drinking/epidemiology , Liver Cirrhosis , Liver Diseases, Alcoholic/epidemiology , Ethanol/adverse effects
5.
Hepatol Commun ; 8(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38619432

BACKGROUND: Alcohol cessation is the only intervention that both prevents and halts the progressions of alcohol-associated liver disease. The aim of this study was to assess the relationship between a return to alcohol use and consultation with hepatology in treatment-seeking patients with alcohol use disorder (AUD). METHODS: Two hundred forty-two patients with AUD were enrolled in an inpatient treatment program, with hepatology consultation provided for 143 (59%) patients at the request of the primary team. Patients not seen by hepatology served as controls. The primary outcome was any alcohol use after discharge assessed using AUDIT-C at 26 weeks after discharge. RESULTS: For the primary endpoint, AUDIT at week 26, 61% of the hepatology group and 28% of the controls completed the questionnaire (p=0.07). For the secondary endpoint at week 52, these numbers were 22% and 11% (p = 0.6). At week 26, 39 (45%) patients in the hepatology group versus 31 (70%) controls (p = 0.006) returned to alcohol use. Patients evaluated by hepatology had decreased rates of hazardous alcohol use compared to controls, with 36 (41%) versus 29 (66%) (p = 0.008) of the patients, respectively, reporting hazardous use. There were no significant differences in baseline characteristics between groups and no difference in rates of prescribing AUD therapy. There was no difference in outcomes at 52 weeks. CONCLUSIONS: Patients evaluated by hepatology had significantly lower rates of return to alcohol use and lower rates of hazardous drinking at 26 weeks but not at 52 weeks. These findings suggest that hepatology evaluation during inpatient treatment of AUD may lead to decreased rates of early return to alcohol use.


Alcoholism , Gastroenterology , Liver Diseases, Alcoholic , Humans , Alcoholism/epidemiology , Alcoholism/therapy , Patient Discharge , Inpatients , Liver Diseases, Alcoholic/therapy , Referral and Consultation
6.
Environ Health Perspect ; 132(4): 47007, 2024 Apr.
Article En | MEDLINE | ID: mdl-38619879

BACKGROUND: Environmental pollutants, including polychlorinated biphenyls (PCBs) have been implicated in the pathogenesis of liver disease. Our group recently demonstrated that PCB126 promoted steatosis, hepatomegaly, and modulated intermediary metabolism in a rodent model of alcohol-associated liver disease (ALD). OBJECTIVE: To better understand how PCB126 promoted ALD in our previous model, the current study adopts multiple omics approaches to elucidate potential mechanistic hypotheses. METHODS: Briefly, male C57BL/6J mice were exposed to 0.2mg/kg polychlorinated biphenyl (PCB) 126 or corn oil vehicle prior to ethanol (EtOH) or control diet feeding in the chronic-binge alcohol feeding model. Liver tissues were collected and prepared for mRNA sequencing, phosphoproteomics, and inductively coupled plasma mass spectrometry for metals quantification. RESULTS: Principal component analysis showed that PCB126 uniquely modified the transcriptome in EtOH-fed mice. EtOH feeding alone resulted in >4,000 differentially expressed genes (DEGs), and PCB126 exposure resulted in more DEGs in the EtOH-fed group (907 DEGs) in comparison with the pair-fed group (503 DEGs). Top 20 significant gene ontology (GO) biological processes included "peptidyl tyrosine modifications," whereas top 25 significantly decreasing GO molecular functions included "metal/ion/zinc binding." Quantitative, label-free phosphoproteomics and western blot analysis revealed no major significant PCB126 effects on total phosphorylated tyrosine residues in EtOH-fed mice. Quantified hepatic essential metal levels were primarily significantly lower in EtOH-fed mice. PCB126-exposed mice had significantly lower magnesium, cobalt, and zinc levels in EtOH-fed mice. DISCUSSION: Previous work has demonstrated that PCB126 is a modifying factor in metabolic dysfunction-associated steatotic liver disease (MASLD), and our current work suggests that pollutants also modify ALD. PCB126 may, in part, be contributing to the malnutrition aspect of ALD, where metal deficiency is known to contribute and worsen prognosis. https://doi.org/10.1289/EHP14132.


Environmental Pollutants , Fatty Liver , Liver Diseases, Alcoholic , Polychlorinated Biphenyls , Male , Mice , Animals , Multiomics , Mice, Inbred C57BL , Ethanol/toxicity , Ethanol/metabolism , Liver/metabolism , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/metabolism , Liver Diseases, Alcoholic/etiology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Environmental Pollutants/toxicity , Environmental Pollutants/metabolism , Zinc/metabolism , Tyrosine/metabolism
7.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1275-1285, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621975

This study aims to investigate the regulatory effects of Shenling Baizhu Powder(SBP) on cellular autophagy in alcoholic liver disease(ALD) and its intervention effect through the TLR4/NLRP3 pathway. A rat model of chronic ALD was established by gavage of spirits. An ALD cell model was established by stimulating BRL3A cells with alcohol. High-performance liquid chromatography(HPLC) was utilized for the compositional analysis of SBP. Liver tissue from ALD rats underwent hematoxylin-eosin(HE) and oil red O staining for pathological evaluation. Enzyme-linked immunosorbent assay(ELISA) was applied to quantify lipopolysaccharides(LPS), tumor necrosis factor-alpha(TNF-α), interleukin-1 beta(IL-1ß), and interleukin-18(IL-18) levels. Quantitative reverse transcription polymerase chain reaction(qRT-PCR) was conducted to evaluate the mRNA expression of myeloid differentiation factor 88(MyD88) and Toll-like receptor 4(TLR4). The effect of different drugs on BRL3A cell proliferation activity was assessed through CCK-8 analysis. Western blot analysis was performed to examine the protein expression of NOD-like receptor pyrin domain-containing 3(NLRP3), nuclear factor-kappa B P65(NF-κB P65), phosphorylated nuclear factor-kappa B P65(p-P65), caspase-1, P62, Beclin1, and microtubule-associated protein 1 light chain 3(LC3Ⅱ). The results showed that SBP effectively ameliorated hepatic lipid accumulation, reduced liver function, mitigated hepatic tissue inflammation, and reduced levels of LPS, TNF-α, IL-1ß, and IL-18. Moreover, SBP exhibited the capacity to modulate hepatic autophagy induced by prolonged alcohol intake through the TLR4/NLRP3 signaling pathway. This modulation resulted in decreased expression of LC3Ⅱ and Beclin1, an elevation in P62 expression, and the promotion of autolysosome formation. These research findings imply that SBP can substantially enhance liver function and mitigate lipid irregularities in the context of chronic ALD. It achieves this by regulating excessive autophagic responses caused by prolonged spirit consumption, primarily through the inhibition of the TLR4/NLRP3 pathway.


Drugs, Chinese Herbal , Liver Diseases, Alcoholic , NLR Family, Pyrin Domain-Containing 3 Protein , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18 , Powders , Lipopolysaccharides , Tumor Necrosis Factor-alpha , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Beclin-1 , NF-kappa B/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/genetics
8.
Clin Sci (Lond) ; 138(7): 435-487, 2024 04 10.
Article En | MEDLINE | ID: mdl-38571396

Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.


Liver Diseases, Alcoholic , Non-alcoholic Fatty Liver Disease , Sepsis , Humans , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Liver Cirrhosis/metabolism , Liver Diseases, Alcoholic/metabolism , Sepsis/complications
9.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G483-G494, 2024 May 01.
Article En | MEDLINE | ID: mdl-38573193

Fatty acid oxidation (FAO) releases the energy stored in fat to maintain basic biological processes. Dehydrogenation is a major way to oxidize fatty acids, which needs NAD+ to accept the released H+ from fatty acids and form NADH, which increases the ratio of NADH/NAD+ and consequently inhibits FAO leading to the deposition of fat in the liver, which is termed fatty liver or steatosis. Consumption of alcohol (ethanol) initiates simple steatosis that progresses to alcoholic steatohepatitis, which constitutes a spectrum of liver disorders called alcohol-associated liver disease (ALD). ALD is linked to ethanol metabolism. Ethanol is metabolized by alcohol dehydrogenase (ADH), microsomal ethanol oxidation system (MEOS), mainly cytochrome P450 2E1 (CYP2E1), and catalase. ADH also requires NAD+ to accept the released H+ from ethanol. Thus, ethanol metabolism by ADH leads to increased ratio of NADH/NAD+, which inhibits FAO and induces steatosis. CYP2E1 directly consumes reducing equivalent NADPH to oxidize ethanol, which generates reactive oxygen species (ROS) that lead to cellular injury. Catalase is mainly present in peroxisomes, where very long-chain fatty acids and branched-chain fatty acids are oxidized, and the resultant short-chain fatty acids will be further oxidized in mitochondria. Peroxisomal FAO generates hydrogen peroxide (H2O2), which is locally decomposed by catalase. When ethanol is present, catalase uses H2O2 to oxidize ethanol. In this review, we introduce FAO (including α-, ß-, and ω-oxidation) and ethanol metabolism (by ADH, CYP2E1, and catalase) followed by the interaction between FAO and ethanol metabolism in the liver and its pathophysiological significance.


Fatty Liver , Liver Diseases, Alcoholic , Humans , Catalase , NAD , Cytochrome P-450 CYP2E1 , Hydrogen Peroxide , Ethanol , Fatty Acids
10.
Elife ; 122024 Apr 22.
Article En | MEDLINE | ID: mdl-38648183

Recent genome-wide association studies (GWAS) have identified a link between single-nucleotide polymorphisms (SNPs) near the MBOAT7 gene and advanced liver diseases. Specifically, the common MBOAT7 variant (rs641738) associated with reduced MBOAT7 expression is implicated in non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis. However, the precise mechanism underlying MBOAT7-driven liver disease progression remains elusive. Previously, we identified MBOAT7-driven acylation of lysophosphatidylinositol lipids as key mechanism suppressing the progression of NAFLD (Gwag et al., 2019). Here, we show that MBOAT7 loss of function promotes ALD via reorganization of lysosomal lipid homeostasis. Circulating levels of MBOAT7 metabolic products are significantly reduced in heavy drinkers compared to healthy controls. Hepatocyte- (Mboat7-HSKO), but not myeloid-specific (Mboat7-MSKO), deletion of Mboat7 exacerbates ethanol-induced liver injury. Lipidomic profiling reveals a reorganization of the hepatic lipidome in Mboat7-HSKO mice, characterized by increased endosomal/lysosomal lipids. Ethanol-exposed Mboat7-HSKO mice exhibit dysregulated autophagic flux and lysosomal biogenesis, associated with impaired transcription factor EB-mediated lysosomal biogenesis and autophagosome accumulation. This study provides mechanistic insights into how MBOAT7 influences ALD progression through dysregulation of lysosomal biogenesis and autophagic flux, highlighting hepatocyte-specific MBOAT7 loss as a key driver of ethanol-induced liver injury.


Acyltransferases , Homeostasis , Lipid Metabolism , Liver Diseases, Alcoholic , Lysosomes , Membrane Proteins , Animals , Humans , Male , Mice , Acyltransferases/genetics , Acyltransferases/metabolism , Hepatocytes/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/genetics , Lysosomes/metabolism , Mice, Inbred C57BL , Mice, Knockout
11.
Anal Biochem ; 691: 115534, 2024 Aug.
Article En | MEDLINE | ID: mdl-38621605

Xing 9 Ling tablet candy (X9LTC) effectively treats alcoholic liver disease (ALD), but its potential mechanism and molecular targets remain unstudied. We aimed to address this gap using network pharmacology. Furthermore, high-performance liquid chromatography (HPLC) and database analysis revealed a total of 35 active ingredients and 311 corresponding potential targets of X9LTC. Protein interaction analysis revealed PTGS2, JUN, and FOS as its core targets. Enrichment analysis indicated that chemical carcinogenesis-receptor activation, IL-17 and TNF signaling pathway were enriched by multiple core targets, which might be the main pathway of action. Further molecular docking validation showed that the core targets had good binding activities with the identified compounds. Animal experiments showed that X9LTC could reduce the high expression of ALT, AST and TG in the serum of ALD mice, alleviate the lesions in liver tissues, and reverse the high expression of PTGS2, JUN, and FOS proteins in the liver tissues. In this study, we established a method for the determination of X9LTC content for the first time, and predicted its active ingredient and mechanism of action in treating ALD, providing theoretical basis for further research.


Drugs, Chinese Herbal , Liver Diseases, Alcoholic , Molecular Docking Simulation , Network Pharmacology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Animals , Mice , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Male , Tablets , Cyclooxygenase 2/metabolism , Mice, Inbred C57BL , Chromatography, High Pressure Liquid , Liver/metabolism , Liver/drug effects
12.
Biomolecules ; 14(4)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38672422

Alcohol-associated liver disease (ALD) is a substantial cause of morbidity and mortality worldwide and represents a spectrum of liver injury beginning with hepatic steatosis (fatty liver) progressing to inflammation and culminating in cirrhosis. Multiple factors contribute to ALD progression and disease severity. Here, we overview several crucial mechanisms related to ALD end-stage outcome development, such as epigenetic changes, cell death, hemolysis, hepatic stellate cells activation, and hepatic fatty acid binding protein 4. Additionally, in this review, we also present two clinically relevant models using human precision-cut liver slices and hepatic organoids to examine ALD pathogenesis and progression.


Disease Progression , Liver Diseases, Alcoholic , Humans , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Animals , Liver/metabolism , Liver/pathology , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Epigenesis, Genetic
13.
Chem Biodivers ; 21(5): e202400005, 2024 May.
Article En | MEDLINE | ID: mdl-38504590

OBJECTIVE: To delve into the primary active ingredients and mechanism of Pueraria lobata for alleviating iron overload in alcoholic liver disease. METHODS: Pueraria lobata's potential targets and signaling pathways in treating alcohol-induced iron overloads were predicted using network pharmacology analysis. Then, animal experiments were used to validate the predictions of network pharmacology. The impact of puerarin or genistein on alcohol-induced iron accumulation, liver injury, oxidative stress, and apoptosis was assessed using morphological examination, biochemical index test, and immunofluorescence. Key proteins implicated in linked pathways were identified using RT-qPCR, western blot analysis, and immunohistochemistry. RESULTS: Network pharmacological predictions combined with animal experiments suggest that the model group compared to the control group, exhibited activation of the MAPK/ERK signaling pathway, suppression of hepcidin expression, and aggravated iron overload, liver damage, oxidative stress, and hepatocyte death. Puerarin and genistein, the active compounds in Pueraria lobata, effectively mitigated the aforementioned alcohol-induced effects. No statistically significant disparities were seen in the effects above between the two groups receiving drug therapy. CONCLUSION: This study preliminarily demonstrated that puerarin and genistein in Pueraria lobata may increase hepcidin production to alleviate alcohol-induced iron overload by inhibiting the MAPK/ERK signaling pathway.


Iron Overload , Isoflavones , Liver Diseases, Alcoholic , MAP Kinase Signaling System , Pueraria , Pueraria/chemistry , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/pathology , Animals , Iron Overload/drug therapy , Iron Overload/metabolism , Isoflavones/pharmacology , Isoflavones/chemistry , MAP Kinase Signaling System/drug effects , Male , Oxidative Stress/drug effects , Genistein/pharmacology , Genistein/chemistry , Mice , Apoptosis/drug effects
14.
Arq Gastroenterol ; 61: e23100, 2024.
Article En | MEDLINE | ID: mdl-38511793

BACKGROUND: Alcoholic liver disease (ALD) and metabolic-dysfunction associated steatotic liver disease (MASLD) are common, and gut microbiota (GM) is involved with both. Here we compared GM composition in animal models of MASLD and ALD to assess whether there are specific patterns for each disease. METHODS: MASLD model- adult male Sprague Dawley rats, randomized into two groups: MASLD-control (n=10) fed a standard diet; MASLD-group (n=10) fed a high-fat-choline-deficient diet for 16 weeks. ALD model- adult male Wistar rats randomized: ALD-control (n=8) fed a standard diet and water+0.05% saccharin, ALD groups fed with sunflower seed and 10% ethanol+0.05% saccharin for 4 or 8 weeks (ALC4, n=8; ALC8, n=8). ALC4/8 on the last day received alcoholic binge (5g/kg of ethanol). Afterwards, animals were euthanized, and feces were collected for GM analysis. RESULTS: Both experimental models induced typical histopathological features of the diseases. Alpha diversity was lower in MASLD compared with ALD (p<0.001), and structural pattern was different between them (P<0.001). Bacteroidetes (55.7%), Firmicutes (40.6%), and Proteobacteria (1.4%) were the most prevalent phyla in all samples, although differentially abundant among groups. ALC8 had a greater abundance of the phyla Cyanobacteria (5.3%) and Verrucomicrobiota (3.2%) in relation to the others. Differential abundance analysis identified Lactobacillaceae_unclassified, Lachnospiraceae_NK4A136_group, and Turicibacter associated with ALC4 and the Clostridia_UCG_014_ge and Gastranaerophilales_ge genera to ALC8. CONCLUSION: In this study, we demonstrated that the structural pattern of the GM differs significantly between MASLD and ALD models. Studies are needed to characterize the microbiota and metabolome in both clinical conditions to find new therapeutic strategies. BACKGROUND: •Changes in the composition of the intestinal microbiota are related to the development of alcoholic liver disease and metabolic-dysfunction associated steatotic liver disease. BACKGROUND: •The diversity of the intestinal microbiota was lower in animals with MASLD compared to ALD. BACKGROUND: •The structural pattern of the intestinal microbiota was significantly different among the experimental groups. BACKGROUND: •Studies are needed to characterize the composition of the intestinal microbiota and metabolome to find new therapeutic strategies.


Fatty Liver , Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Rats , Animals , Male , Saccharin , Rats, Sprague-Dawley , Disease Models, Animal , Rats, Wistar , Liver Diseases, Alcoholic/microbiology , Ethanol
15.
Addict Sci Clin Pract ; 19(1): 19, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38504384

Alcohol-associated liver disease is currently the leading cause of liver transplantation and liver deaths both in Europe and the United States. Efficacious treatments exist for alcohol use disorder, but they are seldomly prescribed for patients who need them. Besides, the presence of liver cirrhosis can complicate pharmacological treatment choices. In this review, we discuss established and innovative treatment strategies to treat unhealthy alcohol use in patients with alcohol-associated liver disease. We also describe the experience of our own institutions, Hospital Universitari Germans Trias i Pujol in Badalona (Spain) and Yale-New Haven Health and Yale Medicine (Connecticut. United States of America).


Alcoholism , Liver Diseases, Alcoholic , Humans , Alcohol Drinking/adverse effects , Alcoholism/complications , Alcoholism/epidemiology , Alcoholism/therapy , Liver Diseases, Alcoholic/complications , Liver Diseases, Alcoholic/therapy , Treatment Outcome
16.
Front Cell Infect Microbiol ; 14: 1358063, 2024.
Article En | MEDLINE | ID: mdl-38533380

Objective: Alcoholic liver disease (ALD) is a liver damage disease caused by long-term heavy drinking. Currently, there is no targeted pharmaceutical intervention available for the treatment of this disease. To address this, this paper evaluates the efficacy and safety of probiotic preparation in treating ALD through conducting a meta-analysis, and provides a valuable insight for clinical decision-making. Methods: A systematic search was conducted across databases, including PubMed, Embase, Web of Science, Cochrane Library, CNKI, VIP, Wanfang, and CBM from the inception dates to October 15, 2023, to identify clinical randomized controlled trials on probiotic preparations in the treatment of ALD. After the literature underwent screening, data extraction, and quality assessment, RevMan 5.3 and Stata 14.2 were employed for data analysis and processing. Results: A total of 9 randomized controlled trials fulfilled the inclusion criteria. The results of the meta-analysis showed that probiotic preparation could significantly improve the liver function of patients with alcoholic liver disease compared with the control group. Probiotic intervention led to a significant reduction in the levels of alanine aminotransferase (MD=-13.36,95%CI:-15.80,-10.91;P<0.00001),aspartate aminotransferase (MD=-16.99,95%CI:-20.38,-13.59;P<0.00001),γ-glutamyl transpeptidase (MD=-18.79,95% CI:-28.23,-9.34; P<0.0001). Concurrently, the level of serum albumin (MD=0.19,95% CI:0.02,0.36;P=0.03) was increased. Furthermore, probiotic intervention could also modulate the composition of intestinal flora in patients with alcoholic liver disease, leading to an augmentation in Bifidobacteria and a reduction in Escherichia coli. However, in patients with alcoholic liver disease, probiotic intervention showed no significant effects on total bilirubin (MD=-0.01,95% CI:-0.17,0.15;P=0.91), tumor necrosis factor-α (MD=0.03,95% CI:-0.86,0.92;P=0.94) and interleukin-6 (MD=-5.3,95% CI:-16.04,5.45;P=0.33). Conclusion: The meta-analysis indicates that probiotics can improve liver function in alcoholic liver disease, reduce inflammatory responses, regulate intestinal flora, which have potential value in the treatment of alcoholic liver disease. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023472527.


Liver Diseases, Alcoholic , Probiotics , Humans , Probiotics/therapeutic use , Treatment Outcome
17.
Medicina (Kaunas) ; 60(3)2024 Feb 24.
Article En | MEDLINE | ID: mdl-38541107

Background and Objectives: The purpose of this study was to investigate whether a new index related to chronic liver disease, the alcoholic liver disease/nonalcoholic fatty liver disease index (ANI) at diagnosis, is associated with all-cause mortality during follow-up in patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV). Materials and Methods: In this study, we included 270 patients with AAV. ANI was calculated using the following equation: ANI = -58.5 + 0.637 (adjusted mean corpuscular volume) + 3.91 (adjusted aspartate transaminase/alanine transaminase) - 0.406 (body mass index) + 6.35 (if male sex). All-cause mortality was defined as death from any cause during follow-up. Results: The median age of the 270 patients with AAV was 61.0 years (34.4% male and 66.6% female). The median ANI was significantly higher in deceased patients than in surviving patients. In the receiver operating characteristic curve analysis, ANI at diagnosis exhibited a statistically significant area under the curve for all-cause mortality during follow-up, and its cut-off was determined to be -0.59. Patients with ANI at diagnosis ≥ -0.59 exhibited a significantly higher risk for all-cause mortality and a significantly lower cumulative patient survival rate than those without. In the multivariable Cox analysis, ANI at diagnosis ≥ -0.59, together with age at diagnosis, was independently associated with all-cause mortality. Conclusions: This study is the first to demonstrate the predictive potential of ANI at diagnosis for all-cause mortality during follow-up in AAV patients without significant chronic liver diseases.


Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Liver Diseases, Alcoholic , Non-alcoholic Fatty Liver Disease , Humans , Male , Female , Middle Aged , Non-alcoholic Fatty Liver Disease/complications , Antibodies, Antineutrophil Cytoplasmic , Follow-Up Studies , Liver Diseases, Alcoholic/diagnosis , Liver Diseases, Alcoholic/complications , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/complications , Retrospective Studies
18.
J Gastrointestin Liver Dis ; 33(1): 7-10, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38554411

Patients with chronic liver diseases (CLD) were considered to be in peril during the initial stages of the Coronavirus disease (Covid-19) pandemic. Progression of the course of the pandemic, however indicated that risk of severe disease and mortality differed, based on the cause of the hepatic disease. Patients suffering from Alcoholic liver disease or liver cirrhosis were confirmed to be at an increased risk by numerous studies, while that was not the case for HBV affected individuals and liver transplant recipients. The grade of liver fibrosis seemed to be the decisive factor for the severity of Covid-19 infection in the case of HCV infected individuals. Results are conflicting in the case of patients with metabolic- associated steatotic liver disease (MASLD) and insufficient in those with autoimmune liver disease.


COVID-19 , Fatty Liver , Liver Diseases, Alcoholic , Liver Diseases , Humans , COVID-19/complications , Liver Diseases/diagnosis , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Liver Diseases, Alcoholic/complications
19.
Aging (Albany NY) ; 16(5): 4224-4235, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38431286

Alcoholic liver disease (ALD) serves as the leading cause of chronic liver diseases-related morbidity and mortality, which threatens the life of millions of patients in the world. However, the molecular mechanisms underlying ALD progression remain unclear. Here, we applied microarray analysis and experimental approaches to identify miRNAs and related regulatory signaling that associated with ALD. Microarray analysis identified that the expression of miR-99b was elevated in the ALD mouse model. The AML-12 cells were treated with EtOH and the expression of miR-99b was enhanced in the cells. The expression of miR-99b was positively correlated with ALT levels in the ALD mice. The microarray analysis identified the abnormally expressed mRNAs in ALD mice and the overlap analysis was performed with based on the differently expressed mRNAs and the transcriptional factors of miR-99b, in which STAT1 was identified. The elevated expression of STAT1 was validated in ALD mice. Meanwhile, the treatment of EtOH induced the expression of STAT1 in the AML-12 cells. The expression of STAT1 was positively correlated with ALT levels in the ALD mice. The positive correlation of STAT1 and miR-99b expression was identified in bioinformatics analysis and ALD mice. The expression of miR-99b and pri-miR-99b was promoted by the overexpression of STAT1 in AML-12 cells. ChIP analysis confirmed the enrichment of STAT1 on miR-99b promoter in AML-12 cells. Next, we found that the expression of mitogen-activated protein kinase kinase 1 (MAP2K1) was negatively associated with miR-99b. The expression of MAP2K1 was downregulated in ALD mice. Consistently, the expression of MAP2K1 was reduced by the treatment of EtOH in AML-12 cells. The expression of MAP2K1 was negative correlated with ALT levels in the ALD mice. We identified the binding site of MAP2K1 and miR-99b. Meanwhile, the treatment of miR-99b mimic repressed the luciferase activity of MAP2K1 in AML-12 cells. The expression of MAP2K1 was suppressed by miR-99b in the cells. We observed that the expression of MAP2K1 was inhibited by the overexpression of STAT1 in AML-12 cells. Meanwhile, the apoptosis of AML-12 cells was induced by the treatment of EtOH, while miR-99b mimic promoted but the overexpression of MAP2K1 attenuated the effect of EtOH in the cells. In conclusion, we identified the correlation and effect of STAT1, miR-99b, and MAP2K1 in ALD mouse model and hepatocyte. STAT1, miR-99b, and MAP2K1 may serve as potential therapeutic target of ALD.


Leukemia, Myeloid, Acute , Liver Diseases, Alcoholic , MicroRNAs , Humans , Animals , Mice , MAP Kinase Kinase 1/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Hepatocytes/metabolism , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Ethanol , Leukemia, Myeloid, Acute/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
20.
Semin Liver Dis ; 44(1): 35-42, 2024 Feb.
Article En | MEDLINE | ID: mdl-38531378

In June 2023, under the patronage of the American Association for Study of Liver Disease, the European Association for Study of the Liver, and the Asociación Latinoamericana para el Estudio del Hígado with the involvement of 236 participants from around the world, a new nomenclature and definition for nonalcoholic fatty liver disease (NAFLD) has been proposed. Metabolic dysfunction-associated steatotic liver disease (MASLD) was defined as presence of hepatic steatosis and at least one of the cardiometabolic risk factors with alcohol intake less than 140 g/wk for women and 210 g/wk for men and no other causes of steatosis. A new entity called combined metabolic dysfunction- and alcohol-associated liver disease (MetALD) was created outside of pure MASLD for patients with metabolic dysfunction and alcohol intake greater than that allowed for MASLD (i.e., 140-350 g/wk for women and 210-420 g/wk for men). Recent studies have confirmed a 95% overlap between NAFLD and the new MASLD diagnostic criteria. Natural history, biomarkers, and thresholds of alcohol intake in MetALD group remains to be studied and validated.


Liver Diseases, Alcoholic , Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Male , Humans , Female , Non-alcoholic Fatty Liver Disease/complications , Alcohol Drinking/adverse effects
...